2、 会得到两个答案:
1、如果相等,则第四个1C为所要找的球;
2、如果不等,则第三个1C为所要找的球。
2、不等,那么这里的第三步是:取下任一边的1C,放上一个1A或
1B,会得到两个结果:
1、如果相等,则所取下的1C为所要找的球;
2、如果不等,则所余下在天平上的1C为所找的。
第二种情况:不相等,且假设为4A轻、4B重,并可知4C为正常之球。
现将 4A分为两个2A;将4B分为3B和1B;
第二步:在天平左边放上4C+1B,右边放3B+2A,可得下列两种情况:
1、 相等,则所找之球在余下的2A中且为轻球,这里的第三步就是只要
2、 将2A分成两个1A,然后将其分放天平两边,轻者即为所找之球。
不等,则有两种情况:
1、左轻右重时,所找的球在3B中且为重球,这里接下来的第三步
是:将3B分为三个1B,拿其中任两个1B来称,可得:
1、如果相等,则余下的那个1B为所要找之球;
2、如果不等,则重的那个1B为所要找的球。
2、左重右轻时,所找的球在2A中且为轻球或是1B且为重球,这
3、 接下来的第三步是:将2A分成两个1A,在天平左边放1A和1B,右边放2C,则可得:
1、如果相等,则所余下的1A为所找的球;
2、如果不等,则分两种情况:
Loading...
未加载完,尝试【刷新】or【关闭小说模式】or【关闭广告屏蔽】。
尝试更换【Firefox浏览器】or【Chrome谷歌浏览器】打开多多收藏!
移动流量偶尔打不开,可以切换电信、联通、Wifi。
收藏网址:www.finalbooks.work
(>人<;)